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Abstract

We address discrete-time pursuit-evasion games in thes pdrere every player has identical sensing and motion ranges
restricted to closed discs of given sensing and steppiniiy ragingle evader is initially located inside a bounded setbof the
environment and does not move until detected. We propdSereep-Pursuit-Capturpursuer strategy to capture the evader and
apply it to two variants of the game: the first involves a stnglrsuer and an evader in a bounded convex environment and th
second involves multiple pursuers and an evader in a boyledarenvironment. In the first game, we give a sufficient g¢@mmon
the ratio of sensing to stepping radius of the players thatantees capture. In the second, we determine the minimabapifity
of capture, which is a function of a novel pursuer formatiod sndependent of the initial evader location. The SweepRurduit
phases reduce both games to previously-studied problethsuniimited range sensing, and capture is achieved usiadaale
strategies. We obtain novel upper bounds on the capture dimepresent simulation studies that address the perfoenahc
the strategies under sensing errors, different ratios n§iag to stepping radius, greater evader speed and diffetenber of
pursuers.
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On Discrete-time Pursuit-evasion Games
with Sensing Limitations

. INTRODUCTION the environment, which we term as tfield. The players can
) ) leave the field but not the environment. The evader follows
The game of pursuit can be posed as to determine a stratgg¥active rabbitmodel, i.e., does not move until it senses a
for a pursuer (a team of pursuers) to capture an evader itygsuer [14]. We present an algorithmic approach in the form
given environment. Bycapture we mean that the evader an f a Sweep-Pursuit-Capturgtrategy for the pursuer to capture
the pursuer (some pursuer) meet at the same location aftgr@ evader. We demonstrate this strategy using two varénts
finite time. The aim of the pursuer (pursuers) is to captuee thhe pursuit-evasion game: the first involves a single pursue
evader for any evader trajectory. The evader wins the gamgq the evader in a bounded convex environment while the
it can avoid capture indefinitely. All the players have idesit second considers multiple cooperating pursuers to cafftere
motion capabilities. Capture strategies are importantiinel-  ayader in a boundaryless environment.
lance where we would like to detect and capture equally agile|, the first game, the pursusweepshe environment in a
intruders. Another application is search-and-rescueaiiors  gefinite path until the evader is sensed, which must nedssar
where a worst-case capture strategy guarantees a rescUgaifpen in finite time. This is analogous to the spanning-tree
spite of any unpredictable motion of the victim. based coverage presented in [17]. We then establish how a
The continuous time version of this game has been studigi&keEepy strategy of moving towards thast-sensedocation
in [1], [2] and [3] to cite a few. Recently, the discrete-timey the evader, eventually reduces the present problem to a
version of the game has received significant attention. [Bteviously-studied one with unlimited sensing. The cofityex
describes sufficient conditions and a strategy for a singd@sumption on the environment is required because otherwis
pursuer to capture an evader in a semi-open environmefife to the limited sensing range, there exist environments
This strategy has been extended in [5] to the case of multiRfnilar to those considered in [10] and an evader strategy,
pursuers in an unbounded environment, to capture a singlgch that the evader does not get detected again. Finally, we
evader which is inside their convex hull. [6] and [7] deseribshow how capture is achieved using the establisheainL
pursuer strategies of moving towards, and towards the @uevi strategy [4]. Our contributions are as follows: First, wegent
positions of the evader respectively, so that the distancedn analysis which provides a novel upper bound on the time
the evader is reduced to a finite, non-zero amount in finiggquired for the pursuit phase to terminate. This bound is an
time. The game has also been studied in different types iffprovement compared to our earlier work [18]. Second, we
bounded environments, e.g., circular environment [6]vedr obtain a sufficient condition on the ratio of sensing to stegp
environments [8]. Visibility-based pursuit evasion ha®me radius of the players for capture to take place in a given
studied in a continuous-time setting in [9] and in polygon&nvironment. Finally, we show that this condition is tight i
environments in a discrete-time setting in [10]. the sense that if it is violated, then there exist sufficielettge
In the context of sensing limitations, in continuous timenvironments, an evader strategy and initial positionsttier
formulations, [11] deals with a version of visibility lingitl to  players, that lead to evasion against thREGDY strategy.
an angle, instead of the entire region. [12] considers a suc-The second game is played with at least five cooperative pur-
cessive pursuit of multiple evaders by a single faster mrsisuers in a boundaryless environment and the field is a bounded
in the plane with sensing range limited to a finite disc. [13gion known to the pursuers. Our contributions are asvlio
proposes a multi-phase pursuit strategy for groups of @ussuFirst, we design a novel pursuer formation and a randomized
with limited range sensing and have demonstrated its capt@weEep strategy for the pursuers to search the field. They
properties in bounded environments via simulation withoguicceedvhen they detect the evader inside a specadture
formal proof. In discrete time formulations, [14] consisi¢he region, which we characterize for the pursuer formation. We
problem on a graph, with the visibility of the pursuer lintit® show that using our BEEP strategy, the pursuers succeed
nodes adjacent to the current node of a pursuer. A framewavkh a certain probability which is a function of the pursuer
which uses probabilistic models for sensing devices for tfiermation and independent of the initial evader locatioaxty
agents is described in [15] and [16]. we propose a cooperative pursuit strategy for the purseers t
We address the case of limited range sensing capabilitgnfine the evader within their sensing discs. We show that
a pursuer and an evader can sense each other only if tlsing this pursuit strategy, the present problem is redtced
distance between them is less than or equal to a given sensngreviously-studied one with unlimited sensing. Finale
radius. We consider the discrete-time version with one anymashow how capture is achieved using the establishesNBs
pursuers and a single evader in a planar environment. T$teategy [5]. We obtain novel upper bounds on the time for
motion of each player is constrained to a stepping disc atousach phase in our strategy, which is an improvement compared
it. The evader is initially located inside a bounded subget t our earlier work [19]. Also, we present a simulation-lzhse



Evader moves te[r] Pursuer moves tp|7]

study of the performance of the strategies under sensiogserr
different ratios of sensing to stepping radius, greatedera
speed and different number of pursuers.

The inspiration for the cooperative strategy proposed in
this paper has been derived from aspects of animal behavior.
It is well known that predators hunt as a conjoined group,
when it is less efficient to hunt alone. This behavior is also

Attimer > 1

. Players measure Players measure
observed when the prey is large or can move as fast as the Evader:yt 7] Evader.ys7]
predators [20]. Further, predators show an inclinationaias Pursueryylr] Pursueryy[r]
specialized behavior by maintaining a fixed formation dgrin cf. (2).(4) cf. 3).(5)

search and capture of preys [21]. Such specializationsesiigg o _
that there may be configurations that are preferred durlﬁntg - A snapshot of each time instante {1,2,...} in our alternate
tion model. The players take measurements before andth&esvader’s

group hunting. Also, in the presence of sensing limitationgove.

groups tend to maintain spacing between each other that is

regulated by their sensory capabilities [22]. These famsgs _ _ _

additional hints towards designing capture-conducivelpier discrete-time equations of motion are

formations. In this context, our analysis sheds light on how . . -1

the maximum group size of the predators varies with preye[t] =elt—1+u (e[t = 1], {wbed 1} =0 {vanl 7]}, )

:ta_lllj?oblhty and with the prey’s nutrition value in the pees plt] = plt — 1]+ u? (p[t 1), {yBe Yy (BT 5:1)7
The paper is organized as follows: the problem’s mathe- @

matical model and assumptions are presented in Sectionwhere at ther' time instant, yg. 7], y5[7] € Q, are

The individual phases of theweep-pursuit-capturstrategies the measurements of the pursuer's position taken by the

and the corresponding main results for both the probleragader before and after thevader’s move, as shown in

are presented in Section Ill. The proofs of the results amgure 1. The parentheses notatifyf.(7]}._, denotes the
presented in Section IV. Simulation results are presemedset {yf (1], yb2], . . ., ybt]}. Due to limited range sensing
Section V. Finally, in Section VI, we study the relationshipnodel, forr € {1,...,t}, we define
between pursuer group sizes and evader availability and its _
nutrition value in our set-up. yelr] = plr —1], it [[p[r — 1] — e[t — 1][| < rsens
Ypet o, otherwise.
)
Il. PROBLEM SET-UP For notational convenience, we defifel,[r]}._} = ¢ for

We assume a discrete-time model with alternate motl(glﬂe initial time¢ = 1. For¢ > 2 and forr & {1 ’t —1h

of the evader and the pursuers: the evader moving first. & have

assume that the players can sense each other preciselyf only i plr — 1], if [|[p[r—1] —e[7]]| < rsens
the distance between them is less than or equal to the sensmé{aﬁ[ 7] = o, otherwise. 3)
radiusrsens Further, we assume that at each time instant, the

players take measurements of each other before and after $irilarly, at the 7' time instant , yb{7]. vi[7] € Qg
evader's move, as shown in Figure 1. Defi@g := Q U ¢, are the measurements of the evader's position taken by the
where Q C R? denotes the environment anglis the null pursuer before and after thevader'smove respectively, as

element. The null element will be used to denote a lack ehown in Figure 1. Due to limited range sensing model, for

measurement in our limited range sensing model.d et Q@ 7 € {1,...,t}, we have

denote the field, i.e., the region that initially contain® th _

evader. The evader follows ractive rabbitmodel - moves v ] elr =1, it flefr —1] = p[r — 1] < 7sens
only after being detected for the first time. We assume ttat th b, otherwise.

pursuers know the fielg and the environmen®. The goal of (4)
the pursuer(s) is teapturethe evader, i.e., a pursuer and the

evader are at the same position at some finite tiwasion ForT € {1,...,t}, we have

is said to occur if the pursuer cannot capture the evader. We elr] it lle[r] — plr — 1] < r

describe theSweep-Pursuit-Capturgtrategy for the following Y] = { ’ Sens ()
problems: 0, otherwise.

The functionsu® : Q x Q4 x---x Qy — Q andu? :
~———
i 2t — 1 times
A. Single pursuer problem QX Qg x---x Qy — Q are termed astrategiesfor the
We have a bounded convex environmehtc R? and the o
field G = Q. Let ¢[t] andplt] denote the absolute positions ofevader and pursuer respectively. The apparent lack of symme
the evader and the pursuer respectively, at tirgeZ~,. The try between the number of arguments in the strategies of the



evader and the pursuer is due to the alternate motion modellll. THE SWEEP-PURSUIT-CAPTURE STRATEGIES AND
We assume that both players can move with a maximum step MAIN RESULTS

size ofrgep that is,
In this section, we describe the Sweep-Pursuit-Capture

[0?]| < Tstep (6) strategies for both the problems and the corresponding main
B results. The proofs are presented in Section IV.

The sensing radiussens is « times the motion radiusee, We We first introduce the following weak notion of capture.
assumexs is greater than 1, i.e., both players can sense further

than they can move. From the reactive rabbit model for thesfinition 111.1 (Trap) The evader istrapped within the
evader, we hava® = 0 until the evader is detected. After th'ssensing radius (resp. radiof the pursuer (resp. pursuers) if

happens, the single pursuer problem consistsi@ermining o any evader strategy, the motion disc of the evader is

u? that guarantees capture for any evader strategy, This  compjetely contained within the sensing disc of the pursuer

problem is described by two key parameters: the ratio @hgp union of the sensing discs of the pursuers) after &fini
sensing to stepping radiusand the ratio of the diameter of .o

the environment to the stepping radi&%fze(—pg)

[[u[] < 7step

To be specific, the evader is trapped at time instagp if
for any evader strategy,
B. Multiple pursuer problem
D D
 UbelTip = elTem— 1, and 42y (Tuag) = c[Tiad:

We have a total ofV > 5 pursuers that can communicate befl7ep e aftep i
among themselves the location of a sensed evader as wellrfg jdea behind our Sweep-Pursuit-Capture strategies is to
their own position with rgspgct to a fixed, global referencgetect the evader and pursue it so as to trap it. Next, we show
frame. The 2enqunmer§@ Is R 2and the fieldS is a bounded that the evader remains trapped for all subsequent timaritsst
subset ofR®. Define Ry = R* U ¢. Let p;[t] denote.the and that the pursuers achieve capture by using strategiées th
absolute positions of thg'" pursuer at timet for everyj € were developed for the unlimited range sensing versionef th

{1,...,N}. Analogous to (1), the discrete-time equations Qfame. This principle applies to both versions of the problem
motion are

elt] = elt — 1]+ u° (e[t — 1], {wbed 7]} o1, {wal7] 3;11)7 A. Single pursuer problem

p;lt] = p;t — 1] We first present each phase of the strategy for the single
t—1

; blem.
+ P (3 p RIS e A ISR pursuer pro
({{ L1} 1}T 1 {0beilr] o {vand ]}7—1) @) 1) Sweep phaseSwEEPstrategy: Let diam(Q) denote the

diameter ofQ. The SVEeP strategy for the pursuer is to move
o . . ) , Wwith maximum step size along a path, as shown in Figure 2
where at ther™ time instantygedr], yznl7] € Ry < -+~ X Ry  gych that the union of the sensing discs of the pursuer at the
N times end of each step until the end of this phase cont@niVe
denote the sets of measurements of the pursuers’ positig&ign such a path aweeping pattior Q. Let tsweepdenote the

taken by the evader before and after its move. Similarlyme taken for this strategy to terminate. We have the fagw
Ypetl 7], UaelT] € R are the measurements of the evaderggyl,

position taken by the pursuers before and after the evader’s
move. The measurements are given by expressions analogous

to (2)-(5). Akin to the single pursuer problem, the funcionLemma I11.2 (SWEEP strategy) In the single pursuer prob-
wé - R2 x Ri N RZ — R2 and uPi - Ri e X Ri x lem with parameters: and d‘arL(Q) the timetsweep taken by

step

— S——— f diam(Q diam(Q
(2t — 1)N times (t — 1)N times the SweeP s at mOSt[ 2ms(tep)—‘ ([ rsle(p )—‘ + I_'ﬂ) steps.
Ri X oo X Ri — R? for everyj € {1,..., N}, are strategies
~—_—————

for tﬁte“gsfa\der and pursuers respectively. The constraithen
maximum step size, given by (6), holds for the evader and
every pursuer. Due to the reactive rabbit model for the ayade
u® = 0 until it is detected by the pursuers for the first time.
The multiple pursuer problem consists a@dsigning a pur-
suer formation and a corresponding strategy that guarasitee
capture of the evaderThis problem is described by the
following key parameters: the ratio of sensing to steppingg. 2. A sweeping path to detect the evader in the Singleyearproblem
radius of the players, the ratio of the diameter of the fieldusing the SvEep strategy.
to the stepping radiug%, and the number of pursuelé.

diam(Q)




2) Pursuit phase -GREEDY strategy: Once the evader is 3) Capture phase 10N strategy: Once the evader is
detected, the GEEDY strategy for the pursuer is tmove trapped within the sensing range of the pursuer, the pursuer
towards the last sensed position of the evader with maxim@mploys the LON strategy from [4] to complete the capture.
step sizeThis strategy has the property that the pursuer senses the sake of completeness, we now give a brief description
the evader’s position at every successive time instanttdsgt of the LION strategy, adapted to the present problem setting.
denote thetrapping time i.e., the time taken by the pursuer The LION strategy can be applied to this phase as follows:

to trap the evader after detecting it. We now present our mainjy Pprior to its (¢ + 1)"* move, the pursuer constructs the

result for the REEDY strategy. line e[t]p[t], as shown in Figure 4. Let this line intersect
the boundary of the environment at a poik{t] such
Theorem I11.3 (G REEDY strategy) In the single pursuer that p[t] lies betweere[t] and X [t].
problem with parameters and 422(2) Q Jif k> \/2+2cosf, (i) The pursuer then also constructs the lieje + 1) X [t]
where and moves to the intersection of this line with the circle
) 1 centered ap[t| and of radiusrsep Of the two possible
Be = ﬁ {dl&(g)w arctan i7 (8) intersection points, the pursuer selects the one closer to
4K | 2KTstep elt + 1].

then theGREEDY strategyhas the following properties:

(i) the pursuer traps the evader within its sensing radius,
and
(i) the trapping timetyap Satisfies AL e

lOg (\/l{zsin2 Be—cos ﬂcl)
rk—1 di
oo < ‘1 [M] ,

log(1 — PCT%BC) 2KTstep

X[t](= X[tsweep+ tirap)

Fig. 4. Single pursuer problem: Using thadn strategy to capture the
. (9) evader. The dotted circles represent the motion discs opldngers.
Furthermore, ifx > 2, then as(diam(Q)/rsep) — 00,
tirap € O ((diam(Q) /rstep)g). This construction guarantees that the intersection p®&int
remains the same as the poikiftsweep+ tiap|, fOr everyt >
Theorem I11.3 is tight in the sense that if the condition OBsyeept traps Wher€tsweept tirap iS the time at the end of the
x Is violated then there exist sufficiently large environnsentpursuit phase. Denoting bya, the time taken by the pursuer
an evader strategy and initial positions for the playeraf thto capture the evader after trapping it, we have the follgwin
lead to evasion against theRGEDY pursuer strategy. This is result.
described by the following result.
Theorem 1.5 (L ION strategy [4]) In the single pursuer
Proposition 111.4 (Evasion) Given a single pursuer problemproblem with parameters and ~=- ), after trapping the
with parameterss and d“‘m(g) such thatx < /2 +2cosf;, evader within the sensing radius and using then strategy
where 3¢ is given by(8), "and Q contains a circle of radius (i) the distance||p[t] — e[t]||, is a non-increasing function
ZS‘E" then there exist an evasion strategy and initial posi- of time,

tions of the players for which the pursuelGREEDY strategy  (ii) the pursuer Caftures the evader,

. 2
fails to trap the evader. (dl%le(p@)) -‘ steps.

(iii) tcapis at most
Figure 3 illustrates this evasion strategy under the coadit

required by Proposition 111.4. Thus, our problem with limited sensing is solved because
once the evader is trapped within the pursuer’s sensingsadi

it remains trapped until capture, from part (i) of Theoreibll

We have also obtained an upper bound on the total time to
capture, i.e.tsweept tirap + teap

B. Multiple pursuer problem

This section describes the sweep-pursuit-capture syrébeg
multiple pursuers and the corresponding results. We assume
thatx > 4 and N > 5. We define the following formation for

) ) ) ) o multiple pursuers.
Fig. 3. lllustrating evasion. The dotted circles are they@ta motion discs
and the solid circle is the pursuer’s sensing disi¢] and p[t] are on the o ) )
circle 2 described in Proposition 111.4 such thit[t] — p[t]|| = rsiep Evader Definition 111.6 (Trapping chain) A group of N > 5 pur-
chooses to move te[t + 1] on & with full step size. suers{pi,...,pn} are said to be in drapping chairforma-

tion if




(i) po,...,pn_1 are placed counterclockwise on a semi- (i) Form a sweeping path for the square region and sweep

circle with diameter equal tdps — pn—1]|, along adjacent strips as shown in Figure 6.
(i) forall je{1,....N—1} The shaded region in Figure 6 refers to the area that would fal
_ e on in the proposed capture regiah Now we are interested in
P = pisall = rsepy/4r® — 25, determining the probability that an evader falls in the sftad
and region in Figure 6. That is given by the following result.
(i) p1,p2,pN—1,pN are on the vertices of a rectangle such _
that the polygon with vertice§p;,...,pn}, in that diam(G)

order, is convex (cf. Figure 5).

=l

TQTsens @ lo

Fig. 5. A trapping chain formation folN = 9 pursuers. The circles around _. ) .
the pursuers denote their sensing ranges. The lightly shegtgon denotes F9- 6. Multiple pursuer problem: \8EEP strategy. The shaded region
the capture region and the darkly shaded region along wittiightly shaded "e€Presents the region swept by the capture region of theifrgrehain.

one denotes the extended capture region.

We now describe the Sweep-Pursuit-Capture strategy for theeorem IIl.7 (SWEEP strategy) In the multiple pursuer
multiple pursuer problem. problem with parameters:, d‘im ©) and N, for any prob-

1) Sweep phase SWEEP strategy: The pursuers begin by ability distribution for the initial posmon of the evadewith
placing themselves in a trapping chain formation. We defirsipport ong, using theSwWEEP strategy,

the capture regionsS for a trapping chain by () the probability P of detecting the evader insid® for a

_ U By, (rsend N do{p% v ) group of pursuers in a trapping chain, satisfies
je{3,....N—2} P l 1 27K ’

where B,,, (rseng C R* denotes the sensing disc of pursuer [+ d7sens (VK2 = 25(N = 3) + 27k

p; and Coo{pQ,...,pN,l} C R? denotes the interior of the and

convex hull of{ps,...,py—1}. The lightly shaded region in (ii) the timetsweeptaken by theSWEEP strategy to terminate

Figure 5 is the proposed capture regidh, for the trapping satisfies

chain. In the sweep phase, pursuers wish to detect the evader diam(G) /2

within the capture region. We consider a square region of Lsweep < [ o ( - ﬂ

length equal to diameter of the regigndiam(G) that contains Tstep \VAk? — 2 (N =3)+ 7k

the field G. The pursuers sweep this square region in the {dlam W
o . 2V/4k? — 25N
direction of the normal t@;py, outward with respect to the + "

convex hull of the pursuers. For a trapping chain shown in

detecting the evader inside the capture region by using the
Var? — 25 — 2. (10) SWEEP strategy isindependentf the evader’s location iig.
sin( 5= v—37) ' This means that the best that the evader can do in the present

As the pursuers move in the direction described earliey thframework is to locate itself initially with a uniform probdity

clear a rectangular strip of lengtliam(G) and widthl+4rsens hg.
The SVEEP strategy for the pursuers is as follows. We shall see that the pursuers win when the evader is
(i) Choose the first rectangular strip at a random distandetected irS by the pursuers. Otherwise, there exists a path for

lo from one edge of the square region containifig the evader such that it can avoid being captured indefinitely
and sweep it length-wise. The distanggis a uni- 2) Pursuit phase €IRCUMCENTER strategy: If the evader
form random variable taking values in the intervais detected within the proposed capture region at tigagep
[—2rsens | + 27rsend. Here, negativéy implies that some the pursuers need to ensure that they trap the evader within
of the pursuers may begin sweeping from outside thkeir sensing ranges. Before we describe the strategy ér th
regiong. pursuit phase, consider the following possibility: if theader

T'step

= ||p1 — ol — 2rsens= Tstep<



steps into the darkly shaded region of the sensing range dfi) thetrapping timetyap satisfies

p2 (or of py_1), thenp, (resp.pn_1) can use the EEEDY 1
strategy (ref. Section 111-A2). By moving towards the evade tirap < V4k? — 25N (1 + m),
the evader’s motion disc gets contained inside that pussuer St
sensing disc and thus the evader gets trapped. This mativate Where

us to define arextended capture regio§¢ for the trapping H(k) = T arctan (—F ,
chain by ( (\/?’H2 - 25)
. : and
S = U By, (rsend N Co{pa,...,pn-1}. (i) at that time, the evader is inside the pursuers’ convex

hull in such a way that

The darkly shaded region along with the lightly shaded negio

in Figure 5 is the extended capture regi®hfor the trapping B@)(e[tsweep—k trap]) © Co{p1, - P HEsweep ttE‘rﬁL‘)
chain.

We now present the following pursuit strategy. At each time The QrRCUMCENTER strategy guarantees trapping of the
stept > tsweep evader even without pursuess andp. But in that case, the
(i) While e[t+1] ¢ S°[t], the pursuerss,...,px—1 Mmove inclusion in (11), which will be required to establish an epp
towards thecircumcentet O of the triangle formed by bound on the time for the capture phase that follows, is not
D2[tsweed €[tsweed ANAPN—1[tsweeg With maximum step. guaranteed.
Pursuersp; and py move parallel tops and py_1 3) The Capture phaseRLANES strategy: Once the evader
respectively. is trapped within the sensing ranges of the pursuers, the
(i) Otherwise, one of the pursuers which senses the evagerrsuers use the LRNES strategy from [5] to capture the
directly, makes a ®EeDY move (ref. Section IlI-A2) evader. Before stating our results, we reproduce thisegfyat
towards the evader and the others move parallel to tHfat completeness.
pursuer with the maximum step. Let the time at the end of the pursuit phasetfgep+ tirap
One such move is shown in Figure 7. In case (i) of thand the evader be inside the convex hull of the pursuers as
strategy, note that the pursuers may not sense the evadelnifll) (cf. Figure 8). Fort > tsweep+ twap and for every
every subsequent move. But they will encircle the evader B{ISUelp;:
“closing” the trapping chain around it and then shrink the « Draw the lineh;[t 4+ 1] throughe[t + 1], parallel to the
enclosed region around the evader. We thus have the follpwin line joining e[t] andp;[t], as shown in Figure 9.
result. « Move to the point closest tet + 1] on the lineh;[t + 1]
with maximum step size.

Pa 1L

P3 p2

Fig. 8. Multiple pursuer problem: evader trapped insidespars’ convex
hull.

Fig. 7. Multiple pursuer problem: RCUMCENTERSstrategy. At timefsweep

the evader position is sensed py. Pursuer®a, .. ., ps move towards O, the

circumcenter of triangle formed ky., e andps. p1 andpg move parallel to

p2 andpsg respectively. The circles around the pursuers represeintdbnsing Fig. 9. Multiple pursuer problem: IRNES strategy. Draw the linéy; [t + 1]

discs. throughe(t+ 1], parallel to the line segmeaft]p;[t] and move onto it closest
to the evader.

Theorem I11.9 (CIRCUMCENTER strategy) In the multiple Theorem Hl.9 .ShOWS that use of theF@UMCENTERStrat'
iam(G) egy in the pursuit phase leads to the evader being trapped and

ursuer problem with parameters 4229) and N, starting =9
P P P S tep g inside the convex hull of the pursuers. Now capture follows

from a trapping chain formation, if the evader is detectethwi from the following theorem, which was partly inspired by the
results on the PANES strategy in [5].

e[tsweeg € Sltsweeg, then using theCIRCUMCENTER strategy,
(i) the pursuers trap the evader within their sensing radii,

Theorem I11.10 (PLANES strategy? In the multiple pursuer

1The circumcenter of a triangle is the unique point in the elavhich is diam(
g
e and N, let the evader

equidistant from all of its three vertices. problem with parameters:,



be trapped inside the convex hull of the pursuers such thHRtoposition IV.2 When the pursuer uses tl&REEDY strat-
property(11)is satisfied. If every pursuer follows tlReANES  egy, for every instant of timg

strategy, then
9 18141 = Jaft]l-

(i) the distances||p;[t] — e[t]|| for everyj € {1,...,N},
are non-increasing functions of time, Note that equality in (12) only holds when the evader moves
the pursuers capture the evader and away from the pursuer along the lipét]e[t].

the time ¢cap taken in the capture phase is at most

18kv4kK2 — 25N.

Item (i) of Theorem II.10 implies that once the evader is
trapped within the sensing ranges of the pursuers, it resnain
trapped within their sensing ranges at the end of every puarsu
move. The capture is nhow complete and we obtained a novel
upper bound on the total time to capture, itQweepttirap+teap

(12)

(i)
(i)

V. PROOFS OF THERESULTS
In this section, we formally prove the main results.

A. Single pursuer problem

Proof of Lemma I11.2:To determine an upper bound fQeep
consider placing inside a square region of lengtham(Q)
and the pursuer moving along_ah_ypothetlcal sweeping path fo It can be deduced that when the pursuer employs the
the square region, as shown in Figure 10. It is straightfodwa, .

. . : GREEDY strategy, the distance between the pursuer and evader
to show that to achieve coverage, this hypothetical swgepu% a non-increasing function of time. We now define a geomet-
path is between strips of withlmsteF parallel to the side. : : Ing funct ime. W detl 9

_ _ diam(Q) . ric construction which is useful in the proof.
selection of width for the There ar —W such strips

2N”‘step
and it takes at mo di‘%le(p@ + [~] steps to sweep one stripDefinition IV.3 (Cone sector sequence).et i, denote the

completely and be positioned to sweep through a neighborifi§€ at the end of the sweep phase. Given a time instant
strip of this hypothetical sweeping path. k'€ Z>o, the sequencé;, of cone sectorg), ; for i € Z>g is

defined as follows:

(i) Define the cone sectd, o with p[ty] as its vertex, angle
bisector defined by the segmefti]p[tk] and extended to
a point X beyonde[ty] such thatlcone := ||p[tk] — X || =
2Kkrstep @S shown in Figure 12. Let the segm&t be of
length=* and perpendicular to the segmenit,] X with
X as its midpoint. Accordingly, lef := ZYp[t]|Z =
2arctan(1/8k) be thecone angle
For k,i > 0, denote byt* the time when the evader
leaves the cone sectdy, ;. There are two possibilities:
(a) the pursuer first constructs a new cone se@py, 1
which is a translation o€, ; having vertex ap[t*]. This
is illustrated in Figure 13.

Fig. 11. Relation between the deviation anglg] and the evasion angle
([t]. The dotted circles represent the motion discs of the ptayEne circle
centered ap(t] (shown partially here) is the pursuer’s sensing range.

~
J

2KT'step

(ii)

diam(Q)

Fig. 10. A hypothetical sweeping path to determine uppentbaan number
of steps to detect the evader.

To prove Theorem 111.3, we need some preliminary defi-
nitions and results which we present now. In what follows,
the notationZABC refers to the smaller of the two angles

(b) If the evader is not insid€;, ;+1, then we denote
tr+1 := t*. The pursuer constructs a new cone sector
sequence&y 1.

between segmentd B and BC.

Definition 1V.1 (Deviation and evasion angles)Given
evader and pursuer at positior$r], p[r], for 7 € {¢t,t + 1},
define thedeviation anglex[t] and the evasion anglé[t] by:
alt] := ZLe[t + 1]p[t + 1]e]t],
Blt] = alt] + Zpt + 1]e[t + 1]e[t].

These angles are illustrated in Figure 11. The followingilites

follows trivially.

The cone sector sequence described above has the following
property.

Proposition IV.4 (Cone sector sequencelsiven a cone sec-
tor sequencé&y,, the maximum number of steps® for which
the evader can remain inside it without being captured fias

Nt = 4k {diam(Q)—‘
N \/§ 2f$7astep '

Proof: We compute an upper bound on the number of
steps a pursuer stays in any cone sector while using the

(13)



1 ;
Y
X Lecone

. . ) Fig. 14. Upper bound on the number of steps a pursuer can kmeias
Fig. 12.  Construction of conép,o. ChooseX on the linee[to]p[to] such  cone sector. The cone sectBf q is illustrated here. The dotted path shows

that [|p[to] — X|| = 2krsep Y'Z has |en_gth%lep and is perpendicular to a hypothetical pursuer path that takes the maximum numbstepis before
segmenip[to] X with X as its midpoint.d is the cone angle. leaving a cone sector.

Leone:= 2’<v'7's'tep

If at some timet, S[t] > Pmaxt], then the pursuer moves
towardse[t + 1] and traps the evader.

This result is obtained by applying the cosine rule to
Aplt]e[tle[t+1], where the notatiod\ A BC' stands for triangle

Fig. 13. Construction of cone sect6f, ;,1. Translate cone sectdl ; to formed by pointsA B andC. as shown in Figure 15
have its vertex ap’. ) ) -

R e\[t +1]

GREEDY strategy. From the definition of a cone sector, this is y
also an upper bound on the number of steps the evader can ¢ Tsen | Gnadi]
remain inside a cone sector. Construct a rectangle withteng
Lcone and width TST‘E" such that it contains a cone sector, as
shown in Figure 14. Orient a frame of reference such that its
X axis is parallel to the angle bisector of the cone sector. Let
p[tk] — Py —---—P5 denote the path as a result of the pursuer,’fig. 15. Constraint on maximum evasion angle. The dotterleciepresent
GREEDY strategy while in the cone sect6y, o. the evader’s motion disc. The circle centeregft} (shown partially here) is
We now construct a path with step size equatdg,at each e pursuers sensing range.
time instant, whose length is greater than or equal to that of
any such greedy pursuer paths. Select a pBinbetweenA
and B such that|[p[ty] — P/|| = rsep Then select another
point P; on betweenC' and D such that||P] — Pj|| = rstep
Of the two possible points, select that point which is farth
from p[ti] as P;. Selecting oddP/’s betweenA and B and
even P/’s betweenA and B until it is not possible to select 81| > 0 —. 3 (15)
any more of theP/’s on segmentsAB and C'D. This is oN= O

illustrated in Figure 14. This construction leads to thepemny where N* is defined in Proposition V.4.
that theX coordinates of thé/’s are smaller than those of the

Lemma IV.6 (Constraint on maximum evasion angle)

For the evader to move out of a cone sector sequence
gk, described in Definition V.3, there exists a time instant
t € [tg, tx+1[ (ref. Definition 1V.3) such that

corresponding?;’s. Thus the number oP!’s is greater than or Proof: For the evader to move out of the cone sector
equal to the number a,’s. Thus, the path[t,]—P]—---—P, Sequencéy, the sum of the angles of deviation for the pursuer
has its length at least equal to thaf,] — P, —- --— Ps. Since Must exceed half of the cone andlgi.e.,

the length of segmenti B is L¢one the number of steps of thit 0

such a path is at most equal igone divided by the difference Z laft]] > =.

in X coordinates of any two consecuti’s, i.e., [ 2. t=t 2

T3 Tstep

Since Q has a finite diameter, there can be at mct m(Q)71  Geometrically, this condition implies that the angle betwe
cone sectors in any cone sector sequence. Thus, the uﬁjiérVeCtOVE[tkH] — pltr41] ande[ty] — pltx] must be at least

bound (13) is established. m 5. Thisis illustrated in Figure 16. From Proposition 1V.2, it
We now state two additional results needed to prove TheBPlies that -
rem 111.3. 0
S 101> 2.

t=tp,
Proposition IV.5 (Maximum evgsicgm angIQe) If tr12e pursuer Equation (15) now follows from the fact that. —t, < N*,
uses theGREEDY strategy and if(x* — 1)rge, > s°[t], Where  for every &, since there exists a maximum number of time

s[t] = |lp[t] — e[t]|, then define stepsN* for which the evader can remain inside any cone
) 9 ) sector sequence, as derived in Proposition 1V.4. [ |
- (+” — Drgiep— 57[1] We are now ready to prove Theorem I11.3.
Bmax[t] := arccos (14) )
25[t]rstep Proof of Theorem 111.3:Two cases need to be considered:



and we can see from part (i) of this proof that the pursuesstrap
the evader within its sensing radius.

If x < 2: We have seen that at each time steghere is
a maximum valueSmay[t] of the evasion angle[t], so that
the evader’s next stegt + 1] is not in the pursuer’s sensing
disc centered ap[t]. This is shown in Figure 17. The key
idea of this part of the proof is that if we ensure that for all
subsequent times after a certain titie Smax(t] is less than
Fig. 16. lllustrating Lemma IV.6. This is a case of the evadmving out the minimum values, (cf. Lemma IV.6) needed for the evader
of the cone sector sequenCg by moving out ofCy o. to leave a cone sector sequence, then the evader is forced
to remain inside a final cone sector sequence and trapping

. follows from part (i). In previous cases, we have seen that th
(i) Evader does not move out of a cone sector sequence

Capture follows from the construction of the cone sector
sequence and from Proposition 1V.4.

(i) Evader moves out of a cone sector sequetcehis
case, we seek to show that the evader cannot keep moving
out of an arbitrarily large number of cone sector sequeri€es.
the evader leaves the cone sector sequé€pce¢hen for some
T € {tk, ..., tkr1 — 1}, B[7] > B Applying the cosine rule
to Ap[rle[r]e[r + 1], we obtain

Fig. 17. lllustrating parameters in Equation (18)t*] is a point such that

2 92 2 . [Ip[t*] — €’ [t*]]| = rstep 7 is the value of the maximum evasion angle if the
s°[T+1] = rgept (s[7] = rstep) " +2rstepls[7] —7step) c0s B[], evader were at’[t*]. The circle of radius<rstep around the pursuer (shown
— 52[7'] _82[7,_|_1] = QTstep(S[T] —Tstep)(l_cosﬁ[ﬂ)_ partially here) is the pursuer's sensing disc which theedbttircle around

e[t*] is the evader’s motion disc.
Using equation (15) and since
GREEDY strategy reduces the distangg] asymptotically to
Tstep Thus after a finite time*, s[t*] attains a value such that
we obtain the maximum evasion angle is less than or equdllte ),

s[T] 4 s[T + 1] < 2K7rsiep

(1 — cos(52=)) wherey is the maximum evasion angle if the evader is’&t],
s[T+1] = rstep < <1 - —2N> (s[7] —rstep)- (16) which satisfieg|p[t*] —¢'[t*]|| = rsepandd is a given positive
H number. At this time instantny, let the pursuer construct a
Defining ;. := s[tx] — rstep We conclude that new cone sector sequentpa. So, if
Xit1 < S[T+ 1] — Tseep (14 8)yN* = 9 (18)
6 2’
(1 — cos(5x=)) ) . . .
s\l (s[7] = 7step), where N* and @ are defined in Proposition 1V.4 and in
the definition of a cone respectively, then for somee
(1 (1- cos(mf,* ) 17 {tfinal, - - - tiina + N*}, B8[7] > (1+6)v = S for the evader to
= o K Xk (17) leaveCiina. This means that the evader is forced to step inside

the sensing disc of the pursuer or to remain inside the final

where the first and third inequalities follow from the facath coneCina. In both cases, the pursuer traps the evader within
distances|t] is non-increasing in the REEDY strategy and jig sensing radius. From equation (18)

the second inequality follows from equation (16). Recaditth

k > 1 by assumption and hence the term in the parenthesis is N < = Ae.
positive and strictly less thah Thus,x, — 0 asymptotically, 2N~

i.e., the distance between the pursuer and evader tendgfo Applying the cosine rule ta\p|t]e[t]e’[t + 1],
asymptotically. Moreover, forx > 2, the distance reduces to
(k — 1)rstep after a finite time. Thus, the motion disc of the K =1/2+2cosy > /2 + 2cos f.

evader will become completely contained within the sensinlgnus we have shown that if > /2T Zcos 7, then the
1 Cy

disc of the pursuer. Hence, the result follows. ) pursuer's REEDY strategy guarantees that the evader is
The case ofk = 2: We have seen that the distaneg] trapped

between the pursuer and evader tends asymptoticaltyde Computing an upper bound on the trapping tinvée have

From Proopé)smofr; IV.5, we ]f_)b_ia":_that aR] — rsiep the angle seen that when the pursuer uses thrRe€DY strategy, the
Bmax — 0. So, after some finite time, evader cannot leave an arbitrarily large number of conesect
o . sequences. Thus, to compute an upper bound on the trapping
Pmax < PYN Be. .
2N time, we compute an upper bound on the number of cone
Thus, the evader becomes confined to the present cone sestotor sequences that the evader can leave. We have seen

sequence according to Lemma V.6 and from Proposition IV.that using the ®EEDY strategy,Bmax < [ after finite time.
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From (14), we can determine that distangge for which To be more specific, let the spatial probability density
Bmax = (e, SO that subsequently, the evader is confined 4§ the Y coordinate of the evader insidg be p(y). Thus,

the final cone sequence: Odiamgp(y)dy = 1. The probability that the evader is detected
E— inside the capture regio§ is given by
Sc = ( ,‘<.}2 — Sin2 ﬁc — COS ﬁc)’rstep I+2
If % is the final cone sequence index, then using equation (17), P(e € S) = / P(e € S|lg = k)P(lp = k)dlo,
—27sens

Sc — Tstep < <M1 <o <Nk = 1) .
¢ Tstep= Xk = AXk—1 = < A )7step wherek € [—2rsens [+ 27send. Assuming the pursuers have no

where) = 1_1*%(21\%) and the worst-casgy = (k—1)7step information about the evader’s location insidel, is chosen

Upon simplifying, we obtain uniformly randomly from[—2rsens I + 27send. Hence, we have
v/ Kk2—sin2 Bc—cos Bc—1 I4+27sens 1
log ( k—1 ) P(e ES) > / P(e € Sllo =k)——dlig
k< —27sens I+ 4rsens
a 1Og(A) 1 1427sens n—1 lo+27”sens+j(l+2’r‘5ens)+l
=T p(y)dy
[+ 4Tsens/2rsens =0 /ZO+2Tsens+j(l+2Tsens)

The result now follows from the fact that for the case:of 2,
we construct an extra final cone sequence and the maximum
number of steps in each cone sequence can be at Mast /z
The asymptotic result follows by routine simplificationsll

Proof of Proposition I11.4:We prove this result by determiningwheren := [diam G/(l + 4rseng| is the number of times

a set of initial conditions and an evader strategy that leadsthe pursuers sweep to clear the entire environment. Sirece th
evasion. Suppose at timethe pursuer and the evader are oMariables andy are independent (cf. Figure 19 for the region

diam G

p(y)dy) dlo,
0 +2Tsenﬁ‘n(l+4rsens)+l

a circle Q with radiusp = %, such that|je[t] — p[t]|| = o©f integration), changing the order of integration gives
rstep @S shown in Figure 3. The evader is not trapped as its 1 n=1 (j+1)(lo+47send

motion disc is not completely contained inside the pursuer’ PleeS) > ——— / p(y)f(y, dy
sensing disc. An evader strategy is to choose a pgint 1] [+ 47’39nsl,-:0 3(lo+47send

on Q such that|le[t] — e[t + 1]|| = rsiep Sincep = \/f%, 1

e[t + 1] lies outside the pursuer’s sensing disc before its move
at time¢ + 1. By the GREEDY strategy,p[t + 1] = ¢[t]. Thus,
lle[t + 1] — p[t + 1]|| = rseep @and the evader can avoid gettingvhere

n(l0+47‘sens>
= T 7l d. ’
l+47'sens/o p(y)f(y, Ddy

tl’apped. [ | Y—2Tsens 1427 sens
f(y l) = { _QTQSens dlo + fy+2T5ensdlo’ for y < l,
! Y —<Tsens .
B. Multiple pursuer problem y—27sens—1 dlo, otherwise.

We first state a property of the effective length of théen both casesf(y,!) = I. Thus, the minimum probability

trapping chain. of success isl/(l + 4reny, since [IUTH= piy)ay =

diam G ~n(lo+47sens _ i
Proposition IV.7 The effective length of the trapping chainf0 p(y)dy + jd.iamg . p.(y)dy' gndp(y) — 0 outside
satisfies of G. The second inequality in part (i) follows by use of the

left hand inequality in Proposition IV.7. The reason whystls
2(v4k? — 25(N — 3) — k) l T, a lower bound on the required probability is that if the persu
T < Tstep < VART=250N =25 pag some information about the evader's location, then they
could choosel, randomly from a smaller interval than the

Proof: The Ieft_ hand side of the mequallty follpws fromcurrent one and thus increase the probability of detectieg t
the fact that the circumference of the circle passing thmu%vader in the capture region

the vertices of the trap_pmg ch.aln IS grea.terthan the. surhef t From the SVEEP strategy, the width of each strip swept
distances of neighboring vertices. The right hand sidefa| . . . .
iS | + 4rsens SO the maximum number of strips after which

from repeated use of the triangle inequality. ; gliam(g)
Proof of Theorem Ill.7.Let the evader be located at a poin{drfm(sweep phase terminates | +4Tsen51' It takes at most

Y, € G and let its distance from the edgeB bey, as shown W time steps for the pursuers to clear a strip
in Figure 18. Note that the distance of the evader from tigllowed by aligning themselves parallel to the adjacenipst
edge AD does not play any role in what follows. The main! Ne result now follows using Proposition IV.7. u
idea behind this proof is as follows: would lie in the shaded ~ To prove Theorem IIL.9, we first establish the following
region in Figure 18 ifo+ 2rsens< Y OF lo — 27'sens> y. This is properties of a trapping chain. In what follows, given psint
equivalent to choosing a length equal to the effective leigt ¢ b, ¢ € R?, the notationdist(a, bc) is the distance of point

of the trapping chain from a total length- 47sens if we let g from the linebe.

take a uniformly random value frofa-2rseng [ 4 27rsend. Thus,

the probability of success for the pursuers is at least thie raLemma IV.8 (Trapping chain properties) If e[t] € SJt],

of [ t0 | + 4rsens then the following statements hold:
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diam(G)
D c u

The use of the GRCUMCENTER strategy in the pursuit
phase and the geometry of the trapping chain gives us the
following result.

Lemma IV.9 If the evader is trapped within the union of
the sensing radii of pursuers at timgqp, for everyj €
i 11 {1,...,N — 1}, then

] T
[2rsn (s dist(e[twap], pj [traplpj+1[ttrap]) > thep_

Ye
ly

Proof: Let the evader be trapped at tintgy, in the
Fig. 18. lllustrating the proof of Theorem III.7. sensing radii of the pursuers. From part (i) of Lemma IV.8,
at timetyap — 1 and for everyj € {1,..., N — 1},

. 3
. dlSt(e[ttrap - 1]7]93’ [ttrap - 1]pj+1[ttrap - 1]) > irstep

Thus, immaterial of where the evader decides to step, its
distance fromp; [tyap — 1|pj+1[twap — 1] is greater than";i”.
Two cases are possible:

(a) the evader steps inside the sensing disc of some pursuer
p;: There are two further possibilities. dfist(e[tap], pj [tirap—
Upjtiltwap — 1]) < %rstep then the evader is trapped by
part (i) of Lemma IV.8 and the present lemma is proven.
Else, we haV@hSt(e[ttrap],pj [ttrap— 1]pj+1[ttrap— 1]) > %Tstep
Now, p; uses part (i) of the (RCUMCENTER strategy. Even
. in this casedist(e[tuap, pj[tragpj+1[trap)) > =2, for every
je{l,...,N—1}.

(b) the evader steps outside the sensing disc of every
pursuer:In a trapping chain, the overlap between the sensing
Fig. 19. The region of integration in determinidg(e € S) in the proof of discs of any two neighboring pursuers has the property that
Theorem I1I.7. Fix a value of in the interval (—2rsens I + 27seng t0 get  |ength of the common chord of these discs is greater than
the values ofy that correspond t@(e € S). 3rep This means that even if any two neighboring pursuers
p; andp;41 happen to move parallel to each other, we have

(I + 2rsens | + 47'seng

(0,0) ly
(—2rsens ) (2rgeng 0) (I + 2rsens 0)

i i ; diSt(e[t ] p'[ttra ]p' 1[ttra]) > Tdep, |
) If dist(e[t], pi[tlpioalt]) > 2 for all € trap)s Pj [trap|Pj+1 [Ltrap, 3
0 {1’__.tsj\f(e£] f'}],[ ]fﬁ;i[ 121e eva2drgtrepcannot st]ep out- We now present the proof of Theorem II1.9.
side C t],... t]} at time t + 1 by crossin
pl.[t]p.fl{ﬁ]l[ hopalil) I * Y "9 Proof of Theorem I11.9:
J J . - . .
(i) If dist(e[t],pj[t]pj+1[t]) < 37’step or dist(e[t i .We first look at a cage in which
1], pj[tlpjs1t]) < 3rsep for somej € {1,. —1}, dist(e[tsweep, Pj[tsweedPj+1[tsweed) < S7sep fOr some

then the evader |$rapped within the sensmg radaf j_e ‘_{1’ C "N_l_}' In thi__s case, the evader is already trz_a_pped
pursuerp; or p;.; or of bothp; and p;. 1. within the sensing radii of the pursuers, from part (i) of

(i) There exists a¢ > 0, independent ofN, such Lelilnor\r/]valie\:ii?tn((:[;he r,]ezu'[tt ho'j;' ltonee]) > 2r for
sweep Pj|tsweepPj+1 [lswee 5 I'ste
that for every pointy € Uje(s,. 3 41 o (rsend N everyj e {1,...,N—1}. There are two possibilitQies: %[t-ﬁ-
Co{pa,....pn-1}, 1] € S¢[t], for anyt > tsweep then there is a pursuer; for
Lqpapn—1 > ¢, which y°[t + 1] = e[t + 1]. This pursuer uses part (ii)_of_
the QRCUMCENTER strategy and the evader is trapped within
Proof: Parts (i) and (ii) follow trivially from the defini- the sensing radius gf;. Part (iii) of the result follows using
tions of trapping within sensing radii and from the constirt  |_emma 1V.9.
of the trapplng chain. For part (ii), we can see that for Sp, let e[tsweept+ 1] ¢ S[tsweed- Now, the pursuers com-
j* = |§] + 1if ¢ (in the specified set) is the point ofpute the circumcente® of Apsl[tsweege|tsweedpn—1[tsweed-
intersection of the tangent from to the sensing disc qf;-, Lemma IV.8 implies that the evader cannot step out of the
then the angleZgpapn—1 is minimized. This follows from pursuers’ convex hull by crossing lineg[t]p,.1[t], for any
the fact that the lingpop;- is parallel tops — pj«—1. This j ¢ {1,...,N — 1}. Thus, it suffices to show that the
angle is minimum whenV = 5. Thus, given a > 4, from evader cannot leave the pursuers’ convex hull by crossireg li
trigonometry, we obtain pi[tlpn|[t]. In fact, we show that at the end of every pursuer
move, the evader remains on the same side-pfy_; until

i K
¢ = 7 —arctan (,/73,@ — 25)‘ it gets trapped. We argue this as follows. As illustrated in
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Figure 20, any point on lines;[tsweedO andpy—1[tsweedO IS  strategy, since the evader is in the convex hull of the pussue
reached faster by, andpy_; respectively than by the evaderlet v; denote vectors of magnitudep in the direction of
Thus, the motion of the evader is confined to the convex hull pf [tirap] — €[tap]. We now wish to seek a lower bound on the
{O,pa,...,pn—1}, which reduces to the poid in a number radiuse of the largest circle centered at the origin that can

of time steps upper bounded by be inscribed inside the convex hull of the vecters This
D5 tsweeq — Ol is equivalent to determining what is the largest of the asgle
~ max [ J w , Zp;[tiaple[tuaplp;[trap]. Due to the property (11) and to the
Jje{2,...,N-1} T'step

o . . fact that the distance between any two adjacent pursuehgin t
which is essentially the time taken by the furthest pursoer trapping chain is non-increasing during theREUMCENTER

reachO. Thus, strategy, the anglep; [tiaple|traplp;[trap] iS the greatest when
R+ 1+ 267step 1 and j are adjacent and the evader is equidistant from both
trap < Tstep ’ of them and at a distance 62 from p;[tuap|p;[tuapl. This
. ) . . . o T'step/ 2 __ Tstep
where R denotes the circumradius of'S shown in Figure 21. This gives, = TS‘er;e T

Now, following [5], we observe that there exist three pursue
which contain the evader within their convex hull at the end
of the pursuit phase, such that the sum of the distances of

Aps[tsweege[tsweegPN—1[tsweed. From elementary geometry,
at time tsyeepWe have

g = Pz —ellllpn—1 — ellllpz — px—1] these pursuers to the evader decreases by atgeaisthe end
4 Area(Apzepy-—1) ’ of every pursuer move. The result now follows from the fact
I+ 2K7step that the distance between any one of the three pursuersand th
~ 2sinZepopn—1’ evader is at modt}-2xrgepat the end of the pursuit phase and
I+ 2Krstep the use of the right hand side inequality in Proposition IV.7
= 2sing u

where the second and third inequalities follow from paij (ii
of Lemma IV.8. Thus, part (ii) of the theorem follows from
the use of right hand inequality in Proposition 1V.7.

Pz[tswee& ‘ pl[tsweerl

Fig. 21. lllustrating proof of Theorem II1.10. Given the el to be at a dis-
tance greater thaﬁ;‘—eID from the linep;p;, the angleLp; [tirap|e|ttrap]p; [ttrap]
is the greatest when the evader is equidistant from botheshth

V. SIMULATION RESULTS

We now present simulation studies to investigate the ro-
bustness of the algorithms to sensing errors. We study the
performance of the algorithms in several cases such ag-diffe
ent sensing to stepping radius ratio and faster evader. ¥ al
_ _ ~study the case of different number of pursuers in the maltipl
e e e . St Sonine pUTSUEY probler. Al SImulations viere run using MATLAB
discs. In the context of sensing errors, we assume two types of

error models:

To prove part (iii), recall that pursuegs, and py move Gaussian errorsWe assume zero-mean additive Gaussian
parallel top, andpy _1, respectively. Since the evader remaingieasurement errors in the position of the evader with a
inside the convex hull of pursueys, ...,py_1, the distance standard deviation given by
of the evader from lin@,py is always greater tha%m, until 18] = ellps ] — el
it gets trapped. From this fact and Lemma V.9, part (i) now il = €lipy el
follows. B for some constant > 0. This means that the uncertainty in
Proof of Theorem IIl.10:Part (i) follows from the PANES the location of the evader increases with its distance from a
strategy. Thus, once the evader is trapped, it remainsdchap pursuer. The evader is defined to be captured if the probabili
all successive time instants when the pursuers useithe#®s  of the evader being inside the motion disc of the pursuerrbefo
strategy. Thus, the problem is reduced to one with unlimitede pursuer's move is more than a certain threshold. In other
sensing for the pursuers. To show that the algorithm leadswords, for some and for some pursuey;,
capture in finite time, we refer the reader to [5].

We now determine an upper bound on the time taken for Bo, 1) Wherlt]) © Brae(pjlt — 1)),
the capture phase in terms of the trapping chain parametevbere3,, (yht]) denotes the circular region of radiagt]
Referring back to the proof of correctness of theARES centered ayp,t].
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Non-Gaussian errorsThe measured distance is given by
(1+€¢%)||p;j[t] —elt]]l, wheree* is a random variable uniformly
distributed in the interval—e, €], wheree > 0 is the specified
error parameter. With respect to angular measurements, if
is the actual angular location of the evader with respect to
local reference frame of a pursuer, then the measured angu L
location is given byd, + €y, whereey is a random variable ¢ 005 01035 02 02 03 03 04 045 05
uniformly distributed in the interva[—A68, Ad], where the
value of Ad was chosen to b& degree. The evader is captured
in this model if ybo{t] € Br,(p;[t — 1]).

°
®

o
o

o
IS
T
L

Estimate of probability of capture
o
N
T

—— Gaussian error
— © — Non-Gaussian error
T T T

o

250 B

200 il

150 b

= - T

A. Single pursuer problem

100

Under the considered noisy sensor models: 50 -

« The SWEEP strategy remains unchanged. It terminates b rameers M08
when an evader measurement is available.

« For the ReeDY and LION strategies, the pursuer use‘Icr—ig. 22. Effect of measurement noise in the single pursueblpm. For a

the noisy measurements of the evader position insteadpaiticular evader strategy, we study how the capture pitityahnd average

the true positiore[t] to compute its next position. capture time given that the strategy succeeds, vary witmdfige parametet,
, . . under Gaussian and Non-gaussian error models. In the togfign interval
For the evader’s motion, we assume that it moves away frQfi.o.1 (not shown to preserve clarity) about the probability eates is

the pursuer with some randomization, while avoiding th@e 95% confidence interval given byP(e) — 2 %71:(5”2\/@],
boundary. Specifically, wheren = 10007is thef_ndumber_oI trialls [iS].tlnﬂfhe bottom figurte, tht‘eﬂ%/(er;tica
« if the evader is not close to the boundary of the enviroff2's 9ve a95% confidence interval about the average capture fiff{e

ment, then it chooses to move to a point on its motiof{"ich is given by_[T_(G) —2y igf:))’T(F) +2y igése))]{WhereSD(E) Is
circle, selected uniformly randomly in a sector with angl%}esjéigizrin‘if‘ftl'gg . tt:]‘: rfﬁﬁ]tg;? gﬁ?ﬁ;ﬁs TZgF estimated probability
0.2 radians. This sector is placed symmetrically along the
line e[t]p[t] and away from the pursuer. s
« If the boundary is visible to the evader, then it choose: . 1
to move to a point[t + 1] on its motion circle such that MW
Zelt + 1]e[t]p[t] = m — 0.2. Of the two points possible, o5l |
the evader chooses that point which is further away fron
the boundary. In other words, when the evader reaches tl
boundary, it chooses to move to a point that is away fron T T T T Y T R T
the pursuer as well as not very close to the boundary. Error parameter &
For our simulations, the environment is a circle with diagnet
40 units. We assumeg = 5 units andrsiep = 1 unit. The initial
position of the evader was chosen uniformly randomly in the
environment. An upper limit o, 000 time steps was set to
decide whether the strategy terminated in a success.
The following is a summary of our findings: o T s 07 oE o os o ok s
(i) Performance of the strategy with noisy measurement: Ertor parameter ¢
The plots of probability of success of the strategy and ayera
capture times after detection (given that the strategyiteat®s Fig. 23. Effect of varying the sensing to stepping radiusratin the single
with capture) for both noise models versus the respectim erpursue(_proble_m. For a particular evader_ strategy, we shady the capture
parameters- are shown in Figure 22. We observe a simidiosobiy Yeres fors = ands - 10 wth the noise parameter under
trend in the performance of the strategy in both noise models ' '
(ii) Different sensing to stepping radius ratids/e repeated
the simulations for the cases of the ratio of sensing to st@pp . The SvEEP strategy remains unchanged. It terminates
ratior = 7 andx = 10. We present the variation of probability when an evader measurement is available.
of success in the Gaussian noise model in Figure 23. « For the QRCUMCENTER and RANES strategies, the
(iii) Faster evaderWe repeated the simulations for the case  team of pursuers use the average of the available evader
of faster evader. Assuming no noise, we present the vamiatio measurements.1[t — 1] and g1 [t], to compute their next
of the probability of success in the top part of Figure 24. We  positions.

observe that when the evader is at leaAt times that of the  £q¢ the sake of simulations. we assuiVe—= 7 pursuers

Average time to capture

= Gaussian error
—_ - —=— — — — Non-Gaussian error

0.4 q

0.2 q

Estimate of probability of capture

k=10

. ]
o8l i

0.6 i

04t —

Estimate of probability of capture

pursuer, the proposed pursuer strategy is not efficient. with x = 5 units andrgep= 1 unit. We assume a square field
) of edge lengthl00 units, where the evader is initially placed
B. Multiple pursuer problem at a uniformly randomly selected location. Upon detectioe,

Under the considered noise models: assume that the evader moves away from the closest pursuer
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Single pursuer problem
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Estimate of probability of capture
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Multiple pursuer problem

Gaussian error B
— — — Non-Gaussian error
0.8 L

06 | -

041

Average time to capture
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1 12 1.4 1.6 18 2 22 24 2.6 2.8 3 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Evader/pursuer speed ratio Error parameter €

Estimate of probability of capture

0 L L L L

Fig. 24. Performance of Sweep-Pursuit-Capture strategnsga faster Fig. 25. Effect of measurement noise in the multiple pursueblem. For
evader. For a particular evader strategy, we study how thei@probability a particular evader strategy, we study how the capture pilithya(top figure)
varies for higher evader speeds, assuming no measuremizet Ade top and average capture time (bottom figure) given that theestyatucceeds, vary
figure presents the single pursuer case and the bottom figeseris the with the noise parameter, under Gaussian and Non-gaussian error models.
multiple pursuer case. The error bars are in accordance Rigfive 22. The error bars are in accordance with Figure 22.

Y S R E— ]
I A R R

08 —

0.6 4

0.4 q

with some randomization. Specifically, it moves to a point or
its motion circle, selected uniformly randomly in a sectér o
angle equal t@).2 radians. This sector has its vertexe&f and
angle bisector parallel to the lingtsweed O, Wheretsyeepis the
time when the evader is detected ands the circumcenter of
the trianglepz[tsweed: P6[tsweed and eftsweed. We study how % oos o1 o015 o0z 025 03 03 04 045 05
the average capture time after detection varies wiln upper o perameere
limit of 1000 time steps was set to decide whether the strateg
terminated in a failure.

The following is a summary of our findings:

(i) Performance of the strategy with noisy measurement:
The plots of probability of success of the strategy and ayera
capture times after detection (given that the strategyiteatas S T T T T
with capture) for both noise models versus the respectiva er Error parameter
parameters are shown in Figure 25. We observe a similar

trend in the performance of the strategy in both noise mode#®y. 26. Effect of varying the number of pursue¥in the multiple pursuer
problem. For a particular evader strategy, we study howdipéuce probability
varies for N = 10 and N = 15 with the noise parameter, under Gaussian
noise model. The error bars are in accordance with Figure 22.

0.2 q

Estimate of probability of capture

N=15

Estimate of probability of capture

(ii) Different number of pursuerdVe repeated the simula-
tions for the cases of the number of pursuéfs= 10 and
N = 15. We present the variation of probability of success in
the Gaussian noise model in Figure 26. the total time taken by the pursuers in all three phases of the

(iii) Faster evaderWe repeated the simulations for the casetrategy is given by
of faster evader. Assuming no noise, we present the vamiatio 1 N
of the probability of success in the bottom part of Figure 24. + + kN
We observe that when the evader is at lga8ttimes that of 5(aN +b)  V5(aN +b)
the pursuers, the proposed pursuer strategy is not efficient

wherea := 2rgeV4k2 — 25/, b= (2mk — 6v/4K2 — 25)/,
¢ = 2rsepV/4K% — 25 and k = V4k? — 25(1 + 1/sin¢) +
VI. BIOLOGICAL INTERPRETATIONS 18xV/4x2 — 25 are constants independent of the number of
Our analysis in the previous sections can shed light on tpeedatorsNV or the evader density.
trade-offs that predators face when deciding upon the groupFrom part (i) of Theorem III.7, we observe that when all
size. Based on our results from Section 11I-B, we now studyther variables are kept constant, the lower bound on suc-
how the group size of the pursuers varies with the evadessful detection probability of thew&EP strategy increases
availability in the multiple pursuer problem. with N. However, a highetV results into a greater time to
For simplicity, we assume a square field where the evadespture the evader. This suggests a trade-off on the graep si
is initially located and denote by := —L— the evader N which we analyze as follows.

diam?(G)

density. From the results in Section I1I-B, an upper bound onLet v denote the nutritional content of the evader. We
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guantify the energy spent by each pursuer as the time talenvironment and moves only when detected. We propose a
to capture the evader. The energy gain from the pursuit Ssveep-Pursuit-Capture strategy for both problems.

quantified as the amount of nutrition each participatingpar In the first problem, we give sufficient conditions on the
receives from the evader. For a self-sustaining pursuitnwst  range of values taken by the ratio of sensing to steppingisadi
have that the energy gained by each pursuer is at least emfahe players so that the K&EDY pursuer strategy of moving

to the energy spent during the hunt. Thus, towards the last-sensed evader position leads to the evader
being trapped within the pursuer’s sensing disc and finally
v 1 cN . . . .
+ EkN. to capture. We also give conditions under which there exist

~ = +
N = 6N +b) * Vi(aN +10) locations from which the evader can escape. In the second

From this relation, we observe that for a given valuejpf problem, we have shown that the pursuers capture the evader
there exists an upper limit on the number of pursuers in tMdth a certain probability that is independent of the initia
group for which it is advantageous for the pursuers to engagjéader location in a bounded region. We give novel upper
in a pursuit with the prospect of gaining energy. A plot of thounds on the total time taken to capture for both problems.
upper limit on the group sizé&V versus the evader densify \We also present simulation studies that suggest robustritss
is shown in Figure 27. respect to sensing errors. Finally, on the basis of the o&dai
This analysis shows that for higher values &fa larger upper bound on the total capture time, we provide an upper
number of pursuers can be accommodated in the trappf@und on the group size of the pursuers for which the pursuit
chain. This is consistent with observations in the biologly advantageous from the point of view of gaining energy.
literature by Caraco and Wolf [24] that have reported highdhe conclusions based on our analysis are consistent with
group size in foraging lions during the wet season (pré3Ppservations reported in ecology literature.
abundance), than in the dry season, (prey scarcity). Ryrthe In the future, it would be interesting to study the effects
from our analysis, it also follows that for a given evadef communication losses or errors in the multiple pursuer
density, the higher the prey nutrition value the higher is problem. Another interesting direction for future reséarc
the upper limit on the number of pursuers in the trappingould be to consider more sophisticated sensing models for
chain. This is consistent with the observations reported Bye players.
Griffiths [25] regarding how the size of hunting packs relate
to the size of the prey relative to that of the predators. ACKNOWLEDGMENTS
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